Crystal structure of human kynurenine aminotransferase II, a drug target for the treatment of schizophrenia.

نویسندگان

  • Franca Rossi
  • Silvia Garavaglia
  • Valeria Montalbano
  • Martin A Walsh
  • Menico Rizzi
چکیده

Kynurenic acid is an endogenous neuroactive compound whose unbalancing is involved in the pathogenesis and progression of several neurological diseases. Kynurenic acid synthesis in the human brain is sustained by the catalytic activity of two kynurenine aminotransferases, hKAT I and hKAT II. A wealth of pharmacological data highlight hKAT II as a sensible target for the treatment of neuropathological conditions characterized by a kynurenic acid excess, such as schizophrenia and cognitive impairment. We have solved the structure of human KAT II by means of the single-wavelength anomalous dispersion method at 2.3-A resolution. Although closely resembling the classical aminotransferase fold, the hKAT II architecture displays unique features. Structural comparison with a prototypical aspartate aminotransferase reveals a novel antiparallel strand-loop-strand motif that forms an unprecedented intersubunit beta-sheet in the functional hKAT II dimer. Moreover, the N-terminal regions of hKAT II and aspartate aminotransferase appear to have converged to highly similar although 2-fold symmetry-related conformations, which fulfill the same functional role. A detailed structural comparison of hKAT I and hKAT II reveals a larger and more aliphatic character to the active site of hKAT II due to the absence of the aromatic cage involved in ligand binding in hKAT I. The observed structural differences could be exploited for the rational design of highly selective hKAT II inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of the PLP-Form of the Human Kynurenine Aminotransferase II in a Novel Spacegroup at 1.83 Å Resolution

Kynurenine aminotransferase II (KAT-II) is a 47 kDa pyridoxal phosphate (PLP)-dependent enzyme, active as a homodimer, which catalyses the transamination of the amino acids kynurenine (KYN) and 3-hydroxykynurenine (3-HK) in the tryptophan pathway, and is responsible for producing metabolites that lead to kynurenic acid (KYNA), which is implicated in several neurological diseases such as schizop...

متن کامل

Crystal structure of human kynurenine aminotransferase I.

The kynurenine pathway has long been regarded as a valuable target for the treatment of several neurological disorders accompanied by unbalanced levels of metabolites along the catabolic cascade, kynurenic acid among them. The irreversible transamination of kynurenine is the sole source of kynurenic acid, and it is catalyzed by different isoforms of the 5'-pyridoxal phosphate-dependent kynureni...

متن کامل

Targeting kynurenine aminotransferase II in psychiatric diseases: promising effects of an orally active enzyme inhibitor.

Increased brain levels of the tryptophan metabolite kynurenic acid (KYNA) have been linked to cognitive dysfunctions in schizophrenia and other psychiatric diseases. In the rat, local inhibition of kynurenine aminotransferase II (KAT II), the enzyme responsible for the neosynthesis of readily mobilizable KYNA in the brain, leads to a prompt reduction in extracellular KYNA levels, and secondaril...

متن کامل

Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia.

The levels of kynurenic acid (KYNA), an astrocyte-derived metabolite of the branched kynurenine pathway (KP) of tryptophan degradation and antagonist of α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors, are elevated in the prefrontal cortex (PFC) of individuals with schizophrenia (SZ). Because endogenous KYNA modulates extracellular glutamate and acetylcholine levels in the PFC, th...

متن کامل

Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach

Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 6  شماره 

صفحات  -

تاریخ انتشار 2008